hybrid steepest-descent method with sequential and functional errors in banach space

نویسندگان

s. saeidi

h. haydari

چکیده

let $x$ be a reflexive banach space, $t:xto x$ be a nonexpansive mapping with $c=fix(t)neqemptyset$ and $f:xto x$ be $delta$-strongly accretive and $lambda$- strictly pseudocotractive with $delta+lambda>1$. in this paper, we present modified hybrid steepest-descent methods, involving sequential errors and functional errors with functions admitting a center, which generate convergent sequences to the unique solution of the variational inequality $vi^*(f, c)$. we also present similar results for a strongly monotone and lipschitzian operator in the context of a hilbert space and apply the results for solving a minimization problem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid steepest-descent method with sequential and functional errors in Banach space

Let $X$ be a reflexive Banach space, $T:Xto X$ be a nonexpansive mapping with $C=Fix(T)neqemptyset$ and $F:Xto X$ be $delta$-strongly accretive and $lambda$- strictly pseudocotractive with $delta+lambda>1$. In this paper, we present modified hybrid steepest-descent methods, involving sequential errors and functional errors with functions admitting a center, which generate convergent sequences ...

متن کامل

Steepest descent approximations in Banach space

Let E be a real Banach space and let A : E → E be a Lipschitzian generalized strongly accretive operator. Let z ∈ E and x0 be an arbitrary initial value in E for which the steepest descent approximation scheme is defined by xn+1 = xn − αn(Ayn − z), yn = xn − βn(Axn − z), n = 0, 1, 2 . . . , where the sequences {αn} and {βn} satisfy the following conditions: (i) 0 ≤ αn, βn ≤ 1, (ii) ∞

متن کامل

Mann-type Steepest-descent and Modified Hybrid Steepest-descent Methods for Variational Inequalities in Banach Spaces

1Department of Mathematics, Shanghai Normal University, Shanghai; and Scientific Computing Key Laboratory of Shanghai Universities, Shanghai, China 2Department of Mathematics & Statistics, College of Science, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia; and Department of Mathematics, Aligarh Muslim University, Aligarh, India 3Department of Applied Mathematics, National S...

متن کامل

A Generalized Hybrid Steepest-Descent Method for Variational Inequalities in Banach Spaces

The hybrid steepest-descent method introduced by Yamada 2001 is an algorithmic solution to the variational inequality problem over the fixed point set of nonlinear mapping and applicable to a broad range of convexly constrained nonlinear inverse problems in real Hilbert spaces. Lehdili and Moudafi 1996 introduced the new prox-Tikhonov regularization method for proximal point algorithm to genera...

متن کامل

A hybrid steepest descent method for constrained convex optimization

This paper describes a hybrid steepest descent method to decrease over time any given convex cost function while keeping the optimization variables into any given convex set. The method takes advantage of properties of hybrid systems to avoid the computation of projections or of a dual optimum. The convergence to a global optimum is analyzed using Lyapunov stability arguments. A discretized imp...

متن کامل

On the Steepest Descent Method for Matrix

We consider the special case of the restarted Arnoldi method for approximating the product of a function of a Hermitian matrix with a vector which results when the restart length is set to one. When applied to the solution of a linear system of equations, this approach coincides with the method of steepest descent. We show that the method is equivalent with an interpolation process in which the...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

ناشر: iranian mathematical society (ims)

ISSN 1017-060X

دوره 39

شماره 4 2013

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023